The complete chloroplast genome of the chlorarachniophyte Bigelowiella natans: evidence for independent origins of chlorarachniophyte and euglenid secondary endosymbionts.

نویسندگان

  • Matthew B Rogers
  • Paul R Gilson
  • Vanessa Su
  • Geoffrey I McFadden
  • Patrick J Keeling
چکیده

Chlorarachniophytes are amoeboflagellate cercozoans that acquired a plastid by secondary endosymbiosis. Chlorarachniophytes are the last major group of algae for which there is no completely sequenced plastid genome. Here we describe the 69.2-kbp chloroplast genome of the model chlorarachniophyte Bigelowiella natans. The genome is highly reduced in size compared with plastids of other photosynthetic algae and is closer in size to genomes of several nonphotosynthetic plastids. Unlike nonphotosynthetic plastids, however, the B. natans chloroplast genome has not sustained a massive loss of genes, and it retains nearly all of the functional photosynthesis-related genes represented in the genomes of other green algae. Instead, the genome is highly compacted and gene dense. The genes are organized with a strong strand bias, and several unusual rearrangements and inversions also characterize the genome; notably, an inversion in the small-subunit rRNA gene, a translocation of 3 genes in the major ribosomal protein operon, and the fragmentation of the cluster encoding the large photosystem proteins PsaA and PsaB. The chloroplast endosymbiont is known to be a green alga, but its evolutionary origin and relationship to other primary and secondary green plastids has been much debated. A recent hypothesis proposes that the endosymbionts of chlorarachniophytes and euglenids share a common origin (the Cabozoa hypothesis). We inferred phylogenies using individual and concatenated gene sequences for all genes in the genome. Concatenated gene phylogenies show a relationship between the B. natans plastid and the ulvophyte-trebouxiophyte-chlorophyte clade of green algae to the exclusion of Euglena. The B. natans plastid is thus not closely related to that of Euglena, which suggests that plastids originated independently in these 2 groups and the Cabozoa hypothesis is false.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plastid-targeting peptides from the chlorarachniophyte Bigelowiella natans.

Chlorarachniophytes are marine amoeboflagellate protists that have acquired their plastid (chloroplast) through secondary endosymbiosis with a green alga. Like other algae, most of the proteins necessary for plastid function are encoded in the nuclear genome of the secondary host. These proteins are targeted to the organelle using a bipartite leader sequence consisting of a signal peptide (allo...

متن کامل

Comparative genomics of mitochondria in chlorarachniophyte algae: endosymbiotic gene transfer and organellar genome dynamics

Chlorarachniophyte algae possess four DNA-containing compartments per cell, the nucleus, mitochondrion, plastid and nucleomorph, the latter being a relic nucleus derived from a secondary endosymbiont. While the evolutionary dynamics of plastid and nucleomorph genomes have been investigated, a comparative investigation of mitochondrial genomes (mtDNAs) has not been carried out. We have sequenced...

متن کامل

Complete Nucleomorph Genome Sequence of the Nonphotosynthetic Alga Cryptomonas paramecium Reveals a Core Nucleomorph Gene Set

Nucleomorphs are the remnant nuclei of algal endosymbionts that were engulfed by nonphotosynthetic host eukaryotes. These peculiar organelles are found in cryptomonad and chlorarachniophyte algae, where they evolved from red and green algal endosymbionts, respectively. Despite their independent origins, cryptomonad and chlorarachniophyte nucleomorph genomes are similar in size and structure: th...

متن کامل

Proteomics Reveals Plastid- and Periplastid-Targeted Proteins in the Chlorarachniophyte Alga Bigelowiella natans

Chlorarachniophytes are unicellular marine algae with plastids (chloroplasts) of secondary endosymbiotic origin. Chlorarachniophyte cells retain the remnant nucleus (nucleomorph) and cytoplasm (periplastidial compartment, PPC) of the green algal endosymbiont from which their plastid was derived. To characterize the diversity of nucleus-encoded proteins targeted to the chlorarachniophyte plastid...

متن کامل

Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans.

Chlorarachniophytes are amoeboflagellate algae that acquired photosynthesis secondarily by engulfing a green alga and retaining its plastid (chloroplast). An important consequence of secondary endosymbiosis in chlorarachniophytes is that most of the nuclear genes encoding plastid-targeted proteins have moved from the nucleus of the endosymbiont to the host nucleus. We have sequenced and analyze...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 24 1  شماره 

صفحات  -

تاریخ انتشار 2007